Polymorphism of theophylline metabolism in man.

نویسندگان

  • C A Miller
  • L B Slusher
  • E S Vesell
چکیده

To determine whether genetic mechanisms control large interindividual variations in theophylline elimination in normal uninduced human subjects, and, if so, to test the possibility that these genetic factors are transmitted as a simple Mendelian trait, theophylline was administered to 79 unrelated adults, six sets of monozygotic twins, six sets of dizygotic twins, and six two-generation families. Thereafter, in urine collected from each subject at regular intervals for 48 h, concentrations of theophylline and its three principal metabolites were measured and rate constants of formation of these metabolites calculated. The twin study, designed to determine the relative contributions of genetic and environmental factors to large interindividual variation in theophylline elimination, revealed predominantly genetic control. Values for this genetic component, designated heritability (H1(2)), of interindividual variation in rate constants of metabolite formation were 0.61, 0.84, and 0.95 for 3-methylxanthine, 1-methyluric acid, and 1,3-dimethyluric acid, respectively. H1(2) for the overall theophylline elimination rate constant (kel) was lower (0.34). In the 79 unrelated adults, each distribution curve for rate constants of formation of each theophylline metabolite appeared to be trimodal. By contrast, the distribution curve for the overall theophylline elimination rate constant appeared to be either unimodal or bimodal. The extent of interindividual variation was fourfold for theophylline kel and 6-8-fold for the three principal metabolites. High correlations among the three rate constants in individual subjects suggested their regulation by a single shared factor. In six families carefully selected to be under near basal environmental conditions so that hepatic theophylline metabolism of each family member would be neither markedly induced nor inhibited, phenotypes for theophylline metabolite rate constants were assigned. This assignment of phenotype was made by the position of each family member's rate constant on the three distribution curves that were generated from the 79 unrelated subjects. In each family, pedigree analysis of the three phenotypes for each rate constant was consistent with their control by two alleles at a single genetic locus and with autosomal codominant transmission. Frequencies of the two alleles at each genetic locus controlling rate constants of formation of theophylline metabolites were similar (p = 0.49, 0.53, and 0.52). In the three families studied with antipyrine (AP) as well as with theophylline, AP k(el) correlated (r approximately 0.7) with each rate constant of theophylline metabolite formation, as well as with theophylline k(el). While these results are compatible with a common regulatory element in the AP and theophylline polymorphisms, other evidence suggests more than a single genetic polymorphism. This additional evidence includes different gene frequencies for the AP (p approximately 0.1) and theophylline (p approximately 0.5) polymorphisms, different genotype assignments in several families for some theophylline metabolites, different distribution curves for theophylline k(el) from those for the three theophylline metabolites in 79 unrelated subjects, and finally low correlations between AP metabolite rate constants and theophylline metabolite rate constants in the three families receiving both drugs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolism of theophylline (1,3-dimethylxanthine) in man.

The intermediary metabolism of theophylline has been the subject of a number of studies, but its fate in the body is still unsettled. Kruger and Schmidt (1) working with dogs reported that the administration of theophylline to dogs is followed by the appearance of 3-methylxanthine in the urine. Myers and Wardell (2) and Buchanan, Christman, and Block (3) showed that ingestion of theophylline in...

متن کامل

Fatal theophylline toxicity precipitated by in situ pulmonary artery thrombosis.

A 57 year old man developed theophylline toxicity in association with acute pulmonary artery thrombosis. The plasma half life of theophylline was prolonged suggesting impaired metabolism secondary to acute right heart failure.

متن کامل

The effect of CYP1A2 gene polymorphism on the metabolism of theophylline

This aim of the study was to investigate the effect of CYP1A2 gene polymorphism on the metabolism of theophylline in minority and Han nationality. A total of 50 cases of Han (Han group) and 50 minority nationalities (ethnic groups) treated with theophylline were selected for the study. The genotype and allele frequencies of the two groups of CYP1A2 gene, G-3113A and G-3860A, were compared to de...

متن کامل

Metabolism of theophylline by cDNA-expressed human cytochromes P-450.

1. Theophylline metabolism was studied using seven human cytochrome P-450 isoforms (CYPs), namely CYP1A1, 1A2, 2A6, 2B6, 2D6, 2E1 and 3A4, and microsomal epoxide hydroxylase (EH), expressed in human B-lymphoblastoid cell lines. 2. At a high theophylline concentration of 10 mM four CYPs (1A1, 1A2, 2D6, 2E1) catalyzed the metabolism of theophylline. 3. Theophylline had the highest affinity (appar...

متن کامل

A study of the metabolism of theobromine, theophylline, and caffeine in man.

Previous studies (1, 2) have shown that after the ingestion of caffeine or theophylline by man there was an increased urinary excretion of material which gave a blue color with the alkaline arsenophosphotungstate reagents used in the determination of uric acid. Myers and Wardell (3) and Buchanan, Christman, and Block (1) presented evidence that this extra color was caused by methyluric acids ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 75 5  شماره 

صفحات  -

تاریخ انتشار 1985